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Abstract—An enantioselective synthesis of the C12–C29 fragment of amphidinolide E is described. Key transformations include an
intramolecular mercuriocyclization reaction, stereoselective introduction of methyl group at the C2 position, and Stille coupling for
the introduction of the diene side chain.
� 2004 Elsevier Ltd. All rights reserved.
The family of amphidinolides was isolated from the
marine dinoflagellates Amphidinium sp.1 and character-
ized by a significant anti-tumor activity against a variety
of NCI tumor cell lines. Among them, amphidinolide E
1 has a unique feature of a 19-membered macrocyclic
structure, which was elucidated by 2D NMR data2 while
the relative stereochemistry of eight chiral centers posi-
tioned at C2, C7, C8, C13, C16, C17, C18 and C19 were
confirmed by a combination of the J-based configura-
tion method and detailed NOESY experiments. The
absolute stereochemistry of 1 was determined by the
exciton chirality method coupled with Mosher�s meth-
od.3 Because of its unique structural features, notable
biological activity, and limited availability, the amphidi-
nolide group of molecules represents attractive targets
for total synthesis. Herein, we report an enantioselective
synthesis of the C12–C29 fragment of amphidinolide E 1
starting from DD-glucose.

Our retrosynthetic analysis for the synthesis of the C12–
C29 fragment of amphidinolide E 1 is illustrated in
Scheme 1. The four chiral centers at C16–C19 were to
be obtained from DD-glucose while the stereo-controlled
off-template construction of the tetrahydrofuran ring
was predicted by utilizing the mercuriocyclization proto-
col on the 4-alkenol derivative 6. The side-chain installa-
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tion was to employ the Stille coupling reaction between
the triflate 3 and the dienyl-stannane intermediate 8
(Scheme 1).

The reported4 intermediate 6 was prepared from DD-glu-
cose by a modified protocol in which the Grignard reac-
tion was carried out in ether by reverse addition of
Grignard reagent at 0 �C to improve the diastereoselec-
tivity (9:1) in favor of 6. Compound 6 was isolated from
the reaction mixture by crystallization in 80% yield. The
oxymercuration reaction5 of 6 gave a cis–trans mixture
of tetrahydrofuran derivatives with 3:1 selectivity but
conveniently separated by flash chromatography to
obtain the pure cis-tetrahydrofuran 11. The stereochem-
istry of 11 was unambiguously determined by X-ray
crystallography (Fig. 1).6 The demercuration7 reaction
of 11 was carried out under a stream of oxygen in the
presence of NaBH4 to give 12, which was benzylated
to form 13 (Scheme 2).

Our next concern was the introduction of a methyl
group at C2 for which compound 12 was heated under
reflux for a prolonged period with methanol and
Amberlyst IR120 H+ resin followed by chromatography
to give the pure b-glycosides 14. The b-glycoside 14
showed in its 1H NMR spectrum a characteristic singlet
at d 4.78, corresponding to H1. The secondary hydroxyl
group present in 14 was oxidized with IBX8 in DMSO to
give the 2-ulose derivative 15, which was subjected to
one carbon homologation with Ph3P@CH2 to produce
the olefin 16. The hydrogenation of the double bond
in the presence of 10% Pd–C gave 5 exclusively. The
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Figure 1. ORTEP diagram of 11.
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structure of 5 was confirmed by NOESY experimental
data. In order to convert 5 into the primary hydroxyl
derivative 4 successive hydrolysis,9 Wittig reaction, ben-
zylation, and hydroboration–oxidation reactions10 were
carried out (Scheme 3). Compound 4 was oxidized using
the Dess–Martin periodinane (DMP)11 and then the
derived aldehyde 19 was subjected to a Grignard reac-
tion with MeMgI and oxidation with DMP to give the
ketone 20. The structure of 20 was confirmed by 1H,
13C NMR, mass, and elemental analysis.

The stannane derivative 8 was not known, so designing
its synthesis became our priority. Amongst several pro-
tocols that could be envisaged, a Pd-catalyzed C–C
bond forming approach12,13 was chosen for its simplic-
ity. Bis-ethylene distannane 9 was reacted with methallyl
chloride 10 in the presence of PdCl2(CH3CN)2 followed
by distillation to give 8, which was analyzed by 1H, 13C
NMR, mass, and elemental analysis (Scheme 4).

Compound 20 was first enolated with LDA and then
treated with N-(2-pyridyl)-triflimide14 to give rise to
the O-Tf derivative 3. It was immediately reacted with
8 by the modified Stille coupling reaction15 to afford
the target fragment 2 (Scheme 5). The structure of com-
pound 2 was confirmed by its 1H, 13C NMR, mass spec-
tra, and microanalysis.16

In conclusion, we have synthesized an advance C12–C29
segment of amphidinolide E 1 and further work leading
to the total synthesis of 1 is under extensive
investigation.
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